crystallography$17981$ - définition. Qu'est-ce que crystallography$17981$
Diclib.com
Dictionnaire ChatGPT
Entrez un mot ou une phrase dans n'importe quelle langue 👆
Langue:

Traduction et analyse de mots par intelligence artificielle ChatGPT

Sur cette page, vous pouvez obtenir une analyse détaillée d'un mot ou d'une phrase, réalisée à l'aide de la meilleure technologie d'intelligence artificielle à ce jour:

  • comment le mot est utilisé
  • fréquence d'utilisation
  • il est utilisé plus souvent dans le discours oral ou écrit
  • options de traduction de mots
  • exemples d'utilisation (plusieurs phrases avec traduction)
  • étymologie

Qu'est-ce (qui) est crystallography$17981$ - définition

SUB-BRANCH OF OPTICAL PHYSICS
Optical Crystallography; Optical crystallography; Electric susceptibility tensor

X-ray crystallography         
  • Model of the arrangement of water molecules in ice, revealing the [[hydrogen bond]]s (1) that hold the solid together.
  • The incoming beam (coming from upper left) causes each scatterer to re-radiate a small portion of its intensity as a spherical wave. If scatterers are arranged symmetrically with a separation ''d'', these spherical waves will be in sync (add constructively) only in directions where their path-length difference 2''d'' sin θ equals an integer multiple of the [[wavelength]] λ. In that case, part of the incoming beam is deflected by an angle 2θ, producing a ''reflection'' spot in the [[diffraction pattern]].
  • Three methods of preparing crystals, A: Hanging drop. B: Sitting drop. C: Microdialysis
  • tetrahedrally]] and held together by single [[covalent bond]]s, making it strong in all directions. By contrast, graphite is composed of stacked sheets. Within the sheet, the bonding is covalent and has hexagonal symmetry, but there are no covalent bonds between the sheets, making graphite easy to cleave into flakes.
  • access-date=2018-11-28}}</ref> The electron density is obtained from experimental data, and the ligand is modeled into this electron density.
  • Structure of a protein alpha helix, with stick-figures for the covalent bonding within electron density for the crystal structure at ultra-high-resolution (0.91&nbsp;Å). The density contours are in gray, the helix backbone in white, sidechains in cyan, O atoms in red, N atoms in blue, and hydrogen bonds as green dotted lines.<ref>From PDB file 2NRL, residues 17–32.</ref>
  • Animation showing the five motions possible with a four-circle kappa goniometer. The rotations about each of the four angles φ, κ, ω and 2θ leave the crystal within the X-ray beam, but change the crystal orientation. The detector (red box) can be slid closer or further away from the crystal, allowing higher resolution data to be taken (if closer) or better discernment of the Bragg peaks (if further away).
  • backbone]] from its N-terminus to its C-terminus.
  • Rocknest]]", October 17, 2012).<ref name="NASA-20121030" />
  • A protein crystal seen under a [[microscope]]. Crystals used in X-ray crystallography may be smaller than a millimeter across.
  • An X-ray diffraction pattern of a crystallized enzyme. The pattern of spots (''reflections'') and the relative strength of each spot (''intensities'') can be used to determine the structure of the enzyme.
  • Workflow for solving the structure of a molecule by X-ray crystallography.
TECHNIQUE USED FOR DETERMINING THE ATOMIC OR MOLECULAR STRUCTURE OF A CRYSTAL, IN WHICH THE ORDERED ATOMS CAUSE A BEAM OF INCIDENT X-RAYS TO DIFFRACT INTO SPECIFIC DIRECTIONS
X-ray structure; X-Ray Crystallography; X-Ray Diffraction Pattern; X ray diffraction; X-ray diffraction analysis; Crystallography, x-ray; Protein Crystallography; Protein crystallography; Xray crystallography; Xray Crystallography; X-ray Crystallography; X-ray crystalography; Crystallographic resolution; Laue diffraction; X-ray diffraction; History of X-ray crystallography; X ray crystallography; X-ray single-crystal analysis; X-ray crystal structure; Single-crystal X-ray crystallography; X-ray crystallographer; Laue method; X-ray diffraction crystallography; Single-crystal X-ray diffraction; X-ray structural analysis
X-ray crystallography is the experimental science determining the atomic and molecular structure of a crystal, in which the crystalline structure causes a beam of incident X-rays to diffract into many specific directions. By measuring the angles and intensities of these diffracted beams, a crystallographer can produce a three-dimensional picture of the density of electrons within the crystal.
X-ray crystallography         
  • Model of the arrangement of water molecules in ice, revealing the [[hydrogen bond]]s (1) that hold the solid together.
  • The incoming beam (coming from upper left) causes each scatterer to re-radiate a small portion of its intensity as a spherical wave. If scatterers are arranged symmetrically with a separation ''d'', these spherical waves will be in sync (add constructively) only in directions where their path-length difference 2''d'' sin θ equals an integer multiple of the [[wavelength]] λ. In that case, part of the incoming beam is deflected by an angle 2θ, producing a ''reflection'' spot in the [[diffraction pattern]].
  • Three methods of preparing crystals, A: Hanging drop. B: Sitting drop. C: Microdialysis
  • tetrahedrally]] and held together by single [[covalent bond]]s, making it strong in all directions. By contrast, graphite is composed of stacked sheets. Within the sheet, the bonding is covalent and has hexagonal symmetry, but there are no covalent bonds between the sheets, making graphite easy to cleave into flakes.
  • access-date=2018-11-28}}</ref> The electron density is obtained from experimental data, and the ligand is modeled into this electron density.
  • Structure of a protein alpha helix, with stick-figures for the covalent bonding within electron density for the crystal structure at ultra-high-resolution (0.91&nbsp;Å). The density contours are in gray, the helix backbone in white, sidechains in cyan, O atoms in red, N atoms in blue, and hydrogen bonds as green dotted lines.<ref>From PDB file 2NRL, residues 17–32.</ref>
  • Animation showing the five motions possible with a four-circle kappa goniometer. The rotations about each of the four angles φ, κ, ω and 2θ leave the crystal within the X-ray beam, but change the crystal orientation. The detector (red box) can be slid closer or further away from the crystal, allowing higher resolution data to be taken (if closer) or better discernment of the Bragg peaks (if further away).
  • backbone]] from its N-terminus to its C-terminus.
  • Rocknest]]", October 17, 2012).<ref name="NASA-20121030" />
  • A protein crystal seen under a [[microscope]]. Crystals used in X-ray crystallography may be smaller than a millimeter across.
  • An X-ray diffraction pattern of a crystallized enzyme. The pattern of spots (''reflections'') and the relative strength of each spot (''intensities'') can be used to determine the structure of the enzyme.
  • Workflow for solving the structure of a molecule by X-ray crystallography.
TECHNIQUE USED FOR DETERMINING THE ATOMIC OR MOLECULAR STRUCTURE OF A CRYSTAL, IN WHICH THE ORDERED ATOMS CAUSE A BEAM OF INCIDENT X-RAYS TO DIFFRACT INTO SPECIFIC DIRECTIONS
X-ray structure; X-Ray Crystallography; X-Ray Diffraction Pattern; X ray diffraction; X-ray diffraction analysis; Crystallography, x-ray; Protein Crystallography; Protein crystallography; Xray crystallography; Xray Crystallography; X-ray Crystallography; X-ray crystalography; Crystallographic resolution; Laue diffraction; X-ray diffraction; History of X-ray crystallography; X ray crystallography; X-ray single-crystal analysis; X-ray crystal structure; Single-crystal X-ray crystallography; X-ray crystallographer; Laue method; X-ray diffraction crystallography; Single-crystal X-ray diffraction; X-ray structural analysis
¦ noun the study of crystals and their structure by means of the diffraction of X-rays by the regularly spaced atoms of crystalline materials.
Quantum crystallography         
Draft:Quantum Crystallography; Quantum Crystallography
Quantum crystallography is a branch of crystallography that investigates crystalline materials within the framework of quantum mechanics, with analysis and representation, in position or in momentum space, of quantities like wave function, electron charge and spin density, density matrices and all properties related to them (like electric potential, electric or magnetic moments, energy densities, electron localization function, one electron potential, etc.).

Wikipédia

Crystal optics

Crystal optics is the branch of optics that describes the behaviour of light in anisotropic media, that is, media (such as crystals) in which light behaves differently depending on which direction the light is propagating. The index of refraction depends on both composition and crystal structure and can be calculated using the Gladstone–Dale relation. Crystals are often naturally anisotropic, and in some media (such as liquid crystals) it is possible to induce anisotropy by applying an external electric field.